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Abstract An experiment in which the third Stokes parameter thermal emission from a

periodic water surface was measured is documented. This parameter is shown to be related

to the direction of periodicity of the periodic surface and to approach brightnesses of up

to 30 K at X band for the surface used in the experiment. The surface actually analyzed

was a _two-layer' periodic surface; the theory of thermal emission from such a surface is

derived and the theoretical results are found to be in good agreement with the experimental

measurements. These results further the idea of using the third Stokes parameter emission

as an indicator of wind direction over the ocean.

1 Introduction

Recent theoretical works have suggested the potential of passive polarlmetry in the remote

sensing of geophysical media [1-3]. These works indicate that the third Stokes parameter,

UB, of the thermal emission may become large for azimuthally asymmetric fields of ob-

servation. In [3], values of Us as high as 40 K were measured from a periodic triangular

soil surface at 10 GHz. In order to demonstrate the existence of the Us parameter for

a water surface, and thus to investigate the potential applicability of passive polarimetry

to ocean remote sensing, observations of a periodic water surface were performed at the

Cold Regions Research and Engineering Laboratory (CRREL), Hanover, NH in Septem-

ber of 1992. This paper documents those observations and the theory developed for the

"two-layer" periodic surface actually analyzed in the experiment.
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2 Theory of Polarimetry

In passive polarimetry, brightness temperatures corresponding to all four modified Stokes

parameters are measured. The brightness temperature Stokes vector is defined as

1- 1 & 1 (EoE_)
_B = -_z = -_ = _ 2Re(EoE;,)

2Im(E_E_,>

(i)

In the above equation, Eh and E,, are the emitted electric fields received from the horizontal

and vertical polarization channels of the radiometer, r/ is the characteristic impedance,

and C = K/A 2 with K denoting Boltzmann's constant, k the wavelength. The first two

parameters of the brightness temperature Stokes vector correspond to the received powers

for horizontal and vertical polarizations, respectively. The third and fourth parameters

correspond to the complex correlation between the electric fields received by the horizontal

and vertical channels. We label the four parameters TBh, TBv, UB, and Vs respectively in

this paper.

It is shown in [2] that the third and fourth Stokes parameters may be related to the

brightness temperature in a 45 degree linearly polarized measurement (TBp) and a right-

hand-circularly polarized measurement (TB,) as follows:

UB = 2TBp- TBh -- TB,, (2)

VB = 2T_r - TBh- TB, (3)

Thus, to measure all four parameters of the Stokes vector, the brightness temperatures in

horizontal, vertical, 45 degree linear, and right-hand-circular polarizations are first mea-

sured, and the above equations are used to obtain UB and Vs.

In the passive remote sensing of rough surfaces, the parameter that is actually of

interest is the emissivity, which relates the brightness temperature emitted by an object

to its actual physical temperature, under the assumption that the object is at a constant
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physical temperature and that the emission from the object is the only source of brightness:

TB. = e°(O,¢)T,.,.,,. (4)

In the above equation, the subscript a refers to the polarization of the brightness tempera-

ture, 0 to the polar observation angle, and ¢ to the azimuthal observation angle. Through

the principles of energy conservation and reciprocity, Kirchhoff's Law relates this emissivity

to the reflectivity of the surface [4]:

_=(0,¢)= 1-r=(0,¢) (5)

The reflectivity r=(0, ¢) for the given incident polarization a is defined as the fraction

of the power incident from direction (0, ¢) that is rescattered and can be evaluated by

integrating the bistatic scattering coefficients 7b,,(0, ¢; O', ¢') over all scattering angles in

the upper hemisphere and summing the results of both orthogonal scattering polarizations.

1 t-/2 2.

,'a(e,¢) = _Jo dO'sinO'fo d¢"r_(O,¢;O',¢') (6)

In the expression of the bistatic scattering coefficient, (0,¢) and (0',¢') represent the

incident and the scattered directions, respectively, and the subscripts a and b represent

the polarizations of the incident and the scattered waves, respectively.

Thus, to calculate the fully polaximetric emission vector, the bistatic scattering co-

efficient for each of four polarizations is first calculated and integrated over the upper

hemisphere to obtain the reflectivity for that particular polarization. Multiplication of the

corresponding emissivity by the physical temperature of the object under view yields the

brightness temperature for this polarization. The fully polarimetric brightness vector is

then calculated as described previously.

3 Two-Layer Periodic Surface Theory

In order to form a periodic water surface, a thin sinusoidal sheet of fiberglass was placed

on top of a flat water surface. After air bubbles trapped underneath were removed, a
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"two-layer" periodic surfaceresulted. To examine the effects of this layer on the measured

brightness temperatures, a theoretical model for thermal emission from a two-layer periodic

surface was derived and implemented.

The problem of calculating thermal emission from a "single-layer" periodic surface has

been solved by several researchers using many different techniques. Two of the methods

used in the single-layer case are extended for the two-layer case in this analysis. The results

from these two %xact' methods are then compared to determine which would apply best

to the eases measured in the experiment. For both of these methods, the calculations are

performed to determine the total power reflected in the reciprocal active problem; this

total reflectivity is then used to obtain the emissivity as described previously.

The extended boundary condition (EBC) method described by Chuang and Kong [5]

for calculating scattering from a slngle-layer periodic surface is the first method to be

applied. In this method, Huygens' principle is applied at the surface so that the scattered

field can be obtained once the surface fields are known. The Huygens' integral equation is

solved by expanding the unknown surface fields into Fourier series and forming a truncated

impedance matrix which is inverted to obtain the surface fields. This method is known as

the extended boundary condition method because the calculations enforce the requirement

that the Huygens' integral which equals the field value within the region of interest must be

zero outside that region. Although the extended boundary condition method is exact, the

numerical formulation becomes ill conditioned if the surface height-to-period ratio becomes

too large [10].

To overcome this problem, a second method, the method of moments [9], can be used

to perform the calculations. In this formulation, the same Huygens' principle equation is

used, but the requirement that the Huygens' integral in the region not of interest be zero

_s not enforced. Instead, the integral equation is "tested" at a discrete number of points

along each surface where the equation is forced to hold. As the number of testing points

is increased, the calculated scattered fields converge to the exact results. The method of
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"3 moments can be used in cases where the extended boundary condition method fails. It

requires, however, more computation time than the EBC.

3.1 General Formulation

Consider a plane wave incident upon a two-layer periodic surface described by fl(z) -

ft(m + P), f,(z) = f2(z + P) with fl representing the upper surface, f2 the lower surface

and P denoting the period of the surface in the k direction (see figure 1). The electric field

of the incident wave is given by

E,, = 6iEoe '_''f" (7)

where k{ denotes the incident wave vector and is equal to &k_i -F _k_ - ;_k,i and _{ is the

polarization of the electric field vector.

Since the structure is uniform in the _ direction, all the field components in regions 0,1,

and 2 will be phase matched to the same exp (ikmy) dependence. Thus, we can replace all

0
the _ terms in Maxwell's equations with i/e_ as is commonly done in wavegulde theory

(usually with the z dependence by convention.) Subsequent equations will thus have the

exp (ik_y) dependence removed.

Maxwell's equations can now be simplified so that the _ and ;_ components of the

electric and magnetic fields can be expressed as functions of the _ components of the fields

as follows:

i

_;.(_) = kj. _ k _[keV.Ej_(_)+ _,,v. × ajv(_)]
i

H_'(_)- k_"- k__[k_v°_j_(_) -_v. × _jy(_)]

(8)

(9)

and s = (z,z) indicates the transverse components of the fields for region j.

(10)

The

where j = 0,1, 2 signifies regions 0,1, or 2, respectively, V, is the gradient operator that is

transverse to the _ direction

_0 0
v.=_+s_



components of the electric and magnetic fields now satisfy the partial differential equations

(V. 2 + kj 2 - k_i2)Ajy = 0 (11)

where Ajy = Ejv, ttjv. Since V. operates only in a two-dlmensional space, the _ components

of the electric and magnetic fields satisfy a two-dimensional wave equation. The Green's

function for such an equation is given by

i O) -
Gi(p.,p%) = -4H_ (ki.lp. - _l) (12)

i oo

= _ f_ dk_ ×expEikx(x- x')+ _k_,l=-z't) (13)
iz

where j = 0,1,2,

and

(14)

(15)

_o = _ + _ (16)

Applying the scalar Green's function form of Huygens' principle to the top periodic

surface and region 0 gives

E_(:°)- f__
oo

t -- --I _ I -4 ---4• V.Co(p.,p.)}V.Eo_(;.) -a_ {Co(p.,:.),_i E0,(p.),_ ' - -_

= { 0 °v(#°) zZ><fx(z)f1(z)

where the _9dependence has been suppressed and

(17)

(18)a/j(_')] d_'do"fij = P"- _ dz' J

The above surface integral is over an infinite domain. However, the periodic properties

of the surface fields can be used to reduce the integration domain to a single period. The

surface fields have the property

(19)
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where w(#,) can be Ejy(ff,), Hjy(#o) or their normal derivatives, n is an integer, and P is

the period of the surface.

Following Chuang and Kong [5], a periodic Green's function can be derived using this

property. This Green's function is

-1 1

Gj_(_.,_'.) - 2ikj.P ._ _ exp[ikj._j.(= - =') + _k.&.lz - z'l] (20)

where

kzi "4-n-_
(21)

aj. = k j,

(1- ,_.,)1/2 ,_\ < 1_" = 4(1- _.)1/_ _. > 1 (22)

Now using the periodic Green's function in the scalar Huygens' principle formulation

for each of the three regions yields

Re#ion zero

F,_(p.)- fpcs_)d_' {Gov(P, -' " -' "• V.Go_(p,,p.)}V,Eo_(p,)-

"--{ 0E01_(/5.) zZ>< fl(x)fl(z) (23)

f_ d_'{eo_(_.,y.)a,. v',a'o,,(p-',)- _o,,(_)_i. v'.ao_(_.,p-:))

= { oH°dp') - <fl(=)z>f_(=)

Re#ion one

(24)

P

J. -' " •v.E, dp.)- E,_(/.)_I v.o,.(p.,p.)}-(sl) dG' {G1p(p.,p.)nl ' -' • ' - -_

Y.)}
(s=)

= lb'(P.) f2(=) < Z '< fl(._)

=< f,.(=)
(25)



/,

I v.-_/_dp.)_(p.),_ ' --' -do" {Gxp(p., ps)nl ' -'- -'" • - _ " •v.(_,.(p.,p.)}
JP (s_)

fp "-'h ' "-' "-'̂ ' - -'(s2 d(;'{C_,,(,_.,p.)2. V./-/,_(p.)- H_,,(p.),,_•V.G,,(p.,p.)}

-- v(#.) f2(z) < z < fl(z)

z < f2(z)

i_e#ion two

I'

Jp a#'{o,__(:.,p".)_,v'E "_" " " ' -(s2) • . 2v(P.) --E2u(P.)n2 "V.G2p(p.,,5'o)}

= { o2,,(:.) _<>f2(_)f_(x)

(26)

(27)

p - -' h V'H "_" ' -(s,)d(_'{G,-_(p.,p.)_- . ,,,_p.)- H_,(Z),_•V.C_.(p.,Z)}

= { _'_(P') _<>f,(_)f'(_) (28)

where (SI) indicates that the integration is performed over surface I.

Once the surface fields are determined, the fields in regions 0,1,and 2 can be obtained

using these relations. At present, there are sixteen unknown vectors to be obtained: the

components of the electric and magnetic fieIds at surface one for regions zero and one, the

components of the electric and magnetic fields at surface two for regions one and two,

and the normal derivatives of the _ component of the dectric and magnetic fields for each

of these surface-region combinations. Electric and magnetic field boundary conditions can

be used at both surfaces to reduce the number of unknown vectors to eight.

3.2 Boundary Conditions

At both surfaces, the 9 component of the electric and magnetic fields are tangential, and

therefore must be continuous:



E0_= _1_ z = fl(_) (29)

H0u= Hlu (30)

E_ = E_u z = f2(x) (31)

HI_ "- H2u (32)

The components of the fields along the surface profile are also tangential and must be

continuous. These relations can be written as:

_ ×/_o,= _ ×/_I. ==A(_) (33)

(34)

'n2 x .E'I, = 42 x .E2, z- f2(z) (35)

,_2x _,, = ,_ x ._. (36)

Note that both the normal and the s component fields l{e in the z - z plane, so that

_j × ft., is a 1} directed vector whose amplitude corresponds to the tangential component

of the field along the surface profile. Following Chuang and Kong [5], the second set of

boundary conditions can be written as:

_(,_I • V oE0_) -- Co_, x V°HI_ -t- c,!}(,%1 • VoEI_)

_(_. V.HoD = -d0_ × V.EI_ + d:_(_l •V.H1D

_ = A(_) (37)

(38)

where

_(_. v.E_D = cla, x v.H,_ + c_9(_ •V.E:_)

_(_,-V.H_D = -dl_ x V.E,_ + d_(_. V.H,D

r,,co Lk_. - 1 _ c I : - I= ,,,_o Lk_. ,,,_,

(39)

(40)

(41)



,i k0t _,kt (42)
C 2 -- C3 --

[ k2°" 1] k._..._.# di [k_o 1] ktd (43)do= [k_, - _o [k_, - _1

a,.= __lk0___2,a_= m kt (44)
tz0k_, m k_,

These eight boundary conditions reduce the sixteen unknown vectors to eight. The

remaining eight unknowns are then solved by expanding the surface fields in the Huygens'

integral equations into a sum of unknown amplitude basis functions. The functions used

in this expansion and the equations solved differ for the EBC and Moment methods; each

method will be treated separately beginning with the EBC.

3.3 Extended Boundary Condition Method

If we substitute the expression for the periodic Green's function into the Huygens' Principle

integral equations and factor out the unprlmed exponential dependence, the equations

reduce to:

lie#ion zero

ei_ +o,,._,

ei_o,,.$o

0 = E_- E ao,,_ _ z < fKm,,9 (46)
n

//0N(P,) = Hvl + _ _(h) ea;:"'_' z > f_(,.,=:) (47)
n _01n

(h) ei_°"'_°

0 = Hv_- E aol. _ z < fl(=,.) (48)
ft.

Region one

f2(,,,=) < z </1(,,_,) (50)
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0 =

eit;i',,._, e;t;g,,-i_,

,_ b(h) e_+"'_" _,(h) e_+''_'

(51)

(52)

0

_,(h)e_t_""_° X" a(h) ei_-''m

n V _'lln n V_ln

(h) ei_;'''_" (h) e_"'_"

(53)

(54)

Region two

where the Iz - z'[ expression in the periodic Green's function has been replaced by z - z'

when the observation point isabove the surface,z'- z when the observation point isbelow

the surface. In the above equations,

(59)

bjln 1 d_' _,. V'.E_(/.)
2ik#.e f,,(s,) x/_.

e-_"_'(")} (60)
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ajln -1 { e -_rcf''_'(=°)

e-i_-"_'(_') }-E_,(/.)_,.v'.
(61)

and b_th_) and "jZ,"(h)have the same form as their electric field counterparts with Eju replaced

by//'Ju" We now recognize that the scattered field in region 0 is composed of a discrete set

of plane waves traveling in the directions indicated by _:+.. These plane waves are known

as the Floquet modes; the amplitude of the nth reflected mode is determined by b01,.

For the extended boundary condition method, we use the equations which involve the

region of no interest for each region. These are equations (46),(48),(49),(51),(52),(54),(56),

and (58). These eight equations wiU uniquely determine the eight unknown surface field

vectors. Once the surface fields are determined, the remaining equations are used to

calculate the scattered field in each of the three regions.

Following Chuang and Kong [5], a Fourier series expansion is used for each of the

unknown field quantities as follows:

Surface one

.2zrn 1
Yl

.2zrn l

.2rrn ]= E2_.Texp ik.,x +,--F=j
T1

.2zrn 1dab1. V,IIlu [p,(z)] = iklodz E 26T, exp ik.,z + ,--_-zj

(62)

(63)

(64)

(65)

Surface two

.2zrn 1E2u [#,(z)] - E 2a- B exp ik,,iz + ,--/-zj
7"$

d_,_,•V.E2_[#.(_)1= ik_.d_E 2_ exp[ik.,_,+
n

.2a'n 1/'/2v [fi, Cz)] = E 27# exp ik.i, + ,--_-zJ
n

.2rn 1

(66)

(67)

(68)
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"'i .27m 1
deh2. V,II2_ [p,(z)] = ik2,dz _ 26 B exp [ik_iz + 2-ff--zj (69)

n

Substituting the above expressions into the eight equations and using the property

a_,_jx V.Hj_Cx,:Cx))= _ax \_ + dx N ) = _a_ \ a_ ) (70)

leads to the coupled matrix equation of Appendix A. Truncating the Fourier series of the

surface field unknowns results in a finite matrix equation which can be solved to obtain

the surface field unknowns. The upward going field amplitudes are then calculated to be

_01 -- _¢O_:,_,T _ kls_+nTc,__1_ __+_T

_(h) dO_l etT . kls_-----'+,.T
01 "-- --d2_Os-t31 _ --_I-I_T

and the downward going field amplitudes in region 2 are

ach) _;s_ +_;_22 _"

(71)

(72)

(73)

(74)

The matrices in the above equations are as described in Appendix k. The above coefficients

are the amplitudes of the _ components of the scattered and transmitted electric and

magnetic fields. The $ and _ components can be calculated from equations (8) and (9).

The scattered plane waves in region zero propagate along the directions determined by

k+,,, while the transmitted plane waves in region two travel along the directions of k_',,.

Once the amplitudes of the scattered modes are calculated, the emissivity of the surface

can be obtained by integrating the total power reflected over the upper hemisphere and

then applying Kirchhoff's law to obtain the emissivity corresponding to the polarization

of the incident field. For the n th propagating scattered Floquet mode, the reflectivity is

given by power transmitted in the _ direction divided by the incident power and is found

in [5]to be:

_ dh) 2
r. = Ib°x"t2+ ,¢oo0a. (75)

_(h) 2la0x0l2 + r/o,,oxo
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where the aolo and a(c_) are as defined in Appendix A. The brightness temperature of the

surface is then given by

TB,, = Tphs,,(1 - )-'_r,,) (76)

where the sum is over the propagating modes reflected for an incident wave polarized in

the a direction.

3.4 Method of Moments

A second method for solving the Huygens' integral equations for a two-layer periodic surface

is the method of moments. The use of the method of moments for computing scattering

from a single-layer periodic surface has been presented by Veysoglu et al [2]; these methods

will be extended for the two-layer periodic surface in this section.

We begin with the integral equations presented in the general formulation section and

the periodic Green's function. We wiU also use a second form of the periodic Green's

function in the calculations

i _ no(,)(k.._/k_(_' +mpl], +(z- z'l'lexp(_ko.mp)ajp(_,#) = _ (77)

in addition to the sum of exponentials form used in the EBC method. The eight surface

field unknowns in the integral equations are now expanded into sums of unknown amplitude

"pulse" functions as follows:

Surface one

E,,(_) = _a.P.(_) (78)
T'I

,',,. V.E,,,(_) = y]b.P.(_) (79)

u_,,(_) = S]c.P.(_) (8o)
tit

,_,. v.u_,,(_) = _d.V.(_) (81)

Surface two

E_(_) = _.P.(_) (S2)
!r&
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where

h2-V, E2_(F) = _f,_P,,(F) (83)
n

n,.(0 = X:eoP.( ) (841

a,. = (8s)

1 k_v-!)-_ < z < "_' (80)"P"(r ) = 0 otherwise

and N is the total number of basis (pulse) functions used.

Instead of solving the equations with right-hand-sides of zero, as was done in the EBC

method, the method of moments uses the equations with right-hand-sides corresponding

to the fields in the region of interest. These six equations are "tested" at a discrete set of

points along the surface upon which the integral is performed where the integral equations

are forced to hold. The missing two equations needed to match the eight unknown functions

are obtained from testing the integral equations for region one on both surfaces one and

two. The testing points are chosen to lie in the center of the pulse basis functions described

above. The integral equations now reduce to the matrix equation given in the Appendix

B.

Note that this method will require the integration of the singularity in the periodic

Green's function when the testing point and integration range overlap. For these "self"

terms of the matrices, an asymptotic expression for the ttankel function of a small argument

is used and analytically integrated. The integral expression proposed by Veysoglu et al [2]

is also used to speed up the convergence of the evaluation of the ttankel function sum in

the periodic Green's function. After solving the matrix equation to determine the surface

fields, the coefficients of the reflected and transmitted Floquet modes can be calculated.

If the reflected fields in region zero are written as
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and the transmitted fields in region two as

H t = _ A_h)e _''_2y

the coemcients are given in terms of the surface fields by

(89)

(90)

(91)

(92)

A. = 2_k,.vJ_c,,)es/----:C-_"" v._,,(_)

-E,_(#)h2.Vo N / (93)
,.I

A(h) 1 [ e-_,, "' .
- 2_k,.t,£cs,)es [---_."" v._,_(:)

e-i_;"'_] (94)
-m,(:)_,. v. _ -j

where _:j'. is defined as in the EBC section.

As with the EBC, once the mode amplitudes are determined, the emissivity can be

found by integrating the total power reflected over the upper hemisphere and then applying

:Kirchhoff's Law. Note that the method of moments does not suffer from the problems of the

EBC when the helght-to-period ratio becomes too large. A larger number of basis functions

is required and the calculations take longer to perform, but the method ultimately yields

an accurate result.
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3.5 Comparison of Methods

Both the EBC and MOM methods were used to perform a theoretical analysis of the sur-

face in the experiment. Figure 2 is a plot of the four polarimetric brightness temperatures

calculated by both the EBC and MOM. Also shown in these plots are the corresponding

brightness temperatures for a periodic water surface without the fiberglass layer on top.

These calculations are for the experimental parameters described in the next section as-

suming a physical temperature of 300 K. The EBC and MOM results are seen to agree,

indicating that the surface slope limitations of the EBC are not being exceeded and that

the numerical resolution of the method of moments code is adequate. The more efficient

EBC method was used for the rest of the theoretical calculations presented. It is also

seen that the effect of the layer is to increase TB_,, TB,,, and TBp by approximately 30K

over the single-layer brightnesses, but the effect on UB is small due to cancellation of this

increase when the brightnesses in the three polarizations are used to compute UB. Finally,

the characteristic "jumps" in brightness temperature for an infinite periodic surface due

to the transition of a Floquet mode from propagating to non-propagating are seen in the

TBh curve. Note that the exact shape of the curve may not be the same as that of Figure

2, as the curve was linearly interpolated between the calculated points every 15 degrees in

azimuth.

4 Experiment Setup

To form the periodic water surface, a sinusoidal sheet of fiberglass 1.32 m x 1.22 m x

0.002 m thick was placed on top of a 1.83 m side square pool of fresh water of 0.23 m

depth. The height and period of the sinusoidal corrugation were 1.4 cm peak-to-peak and

6.8 cm respectively. To prevent water from flowing over the edges, a styrofoam border

approximately 3 cm high was glued around the surface.

The temperature of the water was measured around the surface in the experiment and

found to be 22.5 ° -4- 1.5 ° C throughout the experiment. As fresh water was used, this
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corresponds to an average dielectric constant of 62 + i32 at 10 GHz over this temperature

range [7]. The dielectric constant of the fiberglass layer was measured using a network

analyzer technique [6] from 12 to i8 GHz and found to be 3.1 + 0.1 + i(0.05 4- 0.05) over

this entire band. It was assumed that this dielectric constant was the same at 10 GHz.

The radiometer used in the experiment is the same as that used in [3]. It operates

at 10 GHz with a 200-MHz RF bandwidth, -3 mV/K sensitivity, 4-1 K precision, and

a pyramidal (standard gain) horn of 300 beamwidth. The radiometer was mounted on a

tripod at an elevation of 1.7 m above the pool surface and directed toward the surface

along a direction determined by the azimuthal angle, ¢, and the polar angle, 8 (see Figure

1). The radiometer was calibrated by viewing an absorber whose physical temperature

was known for the hot load, and by viewing the sky at a set of angles for the cold load.

Since the measured sky voltage can be expressed as a function of polar angle, the points

measured can be extrapolated to obtain a radiometer voltage corresponding to brightness

temperature 3K. This voltage is then used as the cold reference for the calibration.

Observations of the periodic surface were made as a function of azimuthal angle, which

was varied by rotating the periodic surface in the pool so that the background noise contri-

bution from the antenna sldelobes would remain constant through a set of measurements.

The horn of this single polarization radiometer was rotated to produce measurements of

TBs, TB,,, and TBv. Measurements of TBr were not possible with this radiometer; however,

the VB brightness was not predicted to be significant.

5 Estimation of Noise Contribution

The contribution of background noise to the measured antenna temperature for the periodic

surface can be large: noise from the antenna sidelobes and from reflections of sky bright-

ness off the surface both contribute to error in the measurements. Since this background

noise could not be easily eliminated from the experiment, estimates of the background

contribution were made so that the noise could later be removed. The contribution of the
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background noisewas estimated by measuring the brightness temperature of a flat water

surfacealoneand by measuringthe brightness temperature of a reflector in the pool which

was the samesize as the periodic surface. The theoretical results for both of these cases

are known; thus, thesemeasurementsform a sort of two-point calibration for the periodic

surfacewhen it is in the pool.

Consider the case of the observation of the water in the pool alone. The measured

brightness temperature, Tlt,.tM, consists of contributions from the water surface, Tlt,,t ,

from the ground beside the pool and the sides of the pool, T,i,_, and from reflections of

the sky temperature, T,k_, off the pool. The contribution of the reflections of the sky

temperature from the ground beside the pool is neglected. If we assume that there is no

variation in these temperatures with the incidence angle, then the relationship between

these variables can be written as:

Tt,,,tM = TIz,,t(1 - fo) + T.k_,(1 - f.)(1 - TI,_JTp,.,,t ) + T.,,ufo (95)

where f, represents the fraction of the antenna pattern that does not view the pool and

Tp,_t is the physical temperature of the water in the pool. Measured values of fo ranged

from 3 to 18 percent through the experiment. Both T,k_, and T,i,_e were obtained from the

experiment at angles corresponding to the specular reflection for the sky temperature and

direct incidence for the ground temperature.

Next consider the case of a reflector in the pool the same size and at the same loca-

tion as the periodic surface. The brightness temperature measured, T, IIM, consists of the

reflection of the sky temperature over the reflector surface, the flat water surface temper-

ature over the remainder of the pool and the reflection of the sky temperature from this

portion of the surface, and the ground contribution. This can be expressed as:

Tre.flM = T,k_f,.+ T,k_(1-- .it',-- f,,)(1 -- Tfz,,tlTp,,,..,)

+TfD.,(1 -- f,. -- f.) + To;d.fo

= Tj_o,_+ Tj_oJ.(T.,_,,IT_.o,- 1)

(96)

(97)
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where fr is the fraction of the antenna pattern that views the reflector surface, which was

found to range from 50 to 74 percent through the experiment. A further assumption that

the physical temperature of the water and the background sky temperature are the same

in the flat surface and reflector measurements is made in the second equality.

Finally, consider the case of the periodic surface in the pool. The measured temperature,T,_,_:M,

consists of contribution from the periodic surface, the flat water in the pool, sky reflections

off the pool area, and the side contribution. The reflections of sky temperature off the pe-

riodic surface are determined by its Floquet modes; however, since the sky temperature

is assumed uniform, this reduces to the same case as that of a specular reflector. The

measured temperature can be expressed as:

= T,_,,lf. + T,kyf.(1 - To,_,I/Tp,,,.t) + Tlt.t(1 - fr - fo)

+Toku(1- Tlt.t/Tp,,,_t)(1- f. - fo) + To,d.f.

= T.,ftM + T...f/.(1 - T,k_/Tpwo,)

T_r I M

(98)

(99)

These three equations can be used to solve for To,_,t, the periodic surface brightness

temperature averaged over the fraction of the antenna pattern on the surface:

Ttv't (T,,,,.fM -- T,'eIlM)
T,,,,./ -" TllatM -- T,.,fIM

0oo)

This brightness temperature has the effects of both the reflections of the sky temperature

off the surface and the antenna field of view outside of the periodic surface removed.

This calibration procedure increases the effect of the radiometer measurement uncer-

talnty in the final calculated To,_,j to approximately 3 K. The assumptions made in the

above equations also contribute to the error in the experiment. A theoretical study in

_vhich the brightness contributions of the water around the surface and the sky tempera-

ture were estimated by integrating the angularly varying T.ttat and T, kv over a theoretical

antenna pattern indicated that the use of the specular Tft_t and Toku values were valid to

within 2 K. A bias in both of these values would produce a systematic error of less than

5 K. One remaining possible source of error is the possibility of the close-to-the-horizon
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15'loquetmodesof the periodic surfaceimaging sometl'dngwith a higher brightnesstemper-

ature than the sky. Note that the UB parameter is fairly insensitive to any systematic error

in the calibration used. Since systematic error will tend to affect all three polarizations in

a similar manner, the effects tend to cancel out, leaving UB unaffected.

The results presented in Section 6 for the measurements of periodic surface brightness

temperatures were obtained using the above technique.

6 Experimental Results

Table I presents the measurement results at 0 = 20 °. Shown are the measured emissivities

eh,e,,, and %. The emissivity of the third Stokes brightness parameter is then obtained as

err = eh + ev - 2%. Thls formula is opposite in sign to that previously given due to the

fact that the radiometer polarization basis was actually rotated to -45 ° in the experiment.

It is observed from the experiment that, in general, the err value approaches a maximum

absolute value at ¢ = -45 ° and approaches zero at ¢ = -90 ° and ¢ = 0 °. This shows

that the UB parameter is sensitive to the azimuthal direction of a periodic water surface.

These trends are also seen in Table 2, which presents the measurement results at 0 = 30 °.

7 Comparison with Theory

Figures 2 and 3 are plots of the measurement results and the theoretically predicted bright-

ness temperatures for polar angles 20 ° and 30 °, respectively, normalized to a constant

physical temperature of 22.5 C. The theoretical values plotted were obtained using the

two-layer version of the Extended Boundary Condition method. These theoretical results

were also averaged noncoherently over 81 points in a three-dimensional calculated antenna

pattern for the pyramidal horn used in the experiment, which tends to smooth out the

abrupt changes obtained for plane wave incidence in section 3. This pattern was obtained

from [8], using the measured antenna dimensions of 5.7 cm by 7 cm for the aperture di-

mension and 10 cm and 8.9 cm for the corresponding flare lengths of the horn. Good
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general agreement is observed between the theory and experiment, indicating that the

background noise removal procedure was reasonable. However_ there is a bias of the ex-

perlmental results above the theoretical predictions of approximately 10 K for TBh, TB_

and TBp and 6 K for UB. One possible source of this error is the permittivity value for the

fiberglass surface used in the experiment, which could be slightly higher at 10 GHz than

the measured value at 12.4 GHz. A increase in this permittivity to 3.2 + i0.1 increases the

theoretical predictions by approximately 5K or 0.017 emissivity. A second possible source

of the error is the use of the specular values for T.ct,_t and Toku as discussed in section 5.

This could also contribute approximately 5 K or 0.017 emissivity variation. Finally_ the

imaging of a brightness source other than the sky by the Floquet modes of the periodic

surface would tend to increase the experimental brightness temperatures above the theo-

retical predictions. However, the area in which the experiment was performed was clear

to about ten degrees above the horizon. Only the azimuthal angles -90, -15, 0_ and 15

are theoretically predicted to have modes this close to the horizon.

8 Conclusion

We have demonstrated in this paper that the UB parameter exists for a two-layer periodic

water surface and can approach brightnesses exceeding 30 K at X band. We have also

shown that the UB parameter is fairly insensitive to the effects of the fiberglass layer and the

measurement uncertainties in the experiment as an indicator of surface azimuthal direction.

Although the periodic water surface is an extremely simplified model of an actual ocean

surface, this experiment further strengthens the idea of using passive polarimetry to infer

wind direction over the ocean. Further research into this area and into other applications

of passive polarimetric remote sensing will continue.
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Appendix A: EBC Coupled Matrix Equation

The matrix equation of the EBC can be written as:

•Ao ca Bo ¢oco o o o 0 o
-- k B--

--qtOG 0 0 AO 'a:_ _oL_"4 0 0 0 0 0

-t +t 0 o -or -.,_t -.,.: o
. o -: +: .,e o -or -.,_-:

° ° -7 Bi- ,,_,- ° - - -,,',W,-i-191

O 0 0 0 D t B t O O

O O 0 O O O D t E t

aT

_T

IT

aB

_+
_S

SS

0

= 0
0
0
0
0

(101)

where

1 e-+_'/_'(+) [ik+/z + .2n_" ]
-ikj, p fe(sl)&rh_ . V, _ .exp ,--p---zj

-i + ajmain [--i(m 2r= - n)Tx ikj.(±#j_)fl(_)]

(1o2)

-1 dz e-+_'''_'(+) [ik+,+m + .2nTr ]

-1 [--i(m 2+- -,_)-F,_ _kj.(+#j,,,)A(_)]

003)

[o?]_+- o_°[_]_+ 0o4)

1 e-+_"P°(') [ik.iz + .2nrr l
-- ikjoP/e(s2) d'z¢_2"V, _ exp ,Tzj

-1 + %_otj. [ [-i(m 2_r: - n)T:_ - ikj,(±#._,,,)/_(_)]
p-(S-flj_ Jp(s2) dz exp

0o5)

[_J=] -- d_.,_ exp ,;]+.+,+-+-"""[,,,,+.+,+,,-,,.,,,., ,--F-+J

-1 [-i(m 2r- - n)T_: /kj.(±#j,_)f_(_)]p Bv/-_-_fv(s_)d_exp

0oo)
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F :k=

where (Sj) indicates that the integration is over surface j,

ao_.= _.ov_oEo(_,•_)

(107)

(lO8)

and

(109)

The above 501 elements are determined by the _ component of the incident electric and

magnetic fields. Truncating the Fourier series of the surface field unknowns results in a

finite matrix which can be inverted to obtain the surface field unknowns.

For the special case of two surfaces described by

27r_

fl(z) = -61cos (--fi-) (110)

27r;e

f2(z) = -h2cos (-7) - d (111)

the matrix elements can be integrated and expressed in terms of Bessel functions as fonows

-1 + ,_j.._;. (+i)l.,_.Ijj=_.t(kj.h,&m)

-1 (+i)l,---t (kj.hl_j,,,)
Jl-,-,q

(112)

(113)

(114)

(115)

(116)

(117)

where Jl_-"l denotes the Bessel function. These Bessel functions were evaluated using a

series form, which was summed until convergence to within a fractional accuracy of 10 -s

was observed.
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Appendix B: MoM Matrix Equation

where

The matrix equation for the Method of Moments can be written as:

c2_ ¢o_ 0 0 0 0 0

-do_ o _ a2_ o o o o
D E 0 0

0 0 D E

I J 0 0

0 0 ? 7
0 0 0 0

0 0 0 0

K c3L ClM 0

-diM 0 K d3L

N 0 0 0

o o -g -O

w

d

]

0

0

0

0

0

0

_m. f.[[ ,_1• V.Gop(tm,z)dS'_-]rnn - 2 + 1(st)

_]m. = Gop(tm, x.) - GoPCt_,x.-1)

_mn - 2

["_-]rnn = - L[T,(Sl) G'Pct'' z)d_

with the testing points and integration on surface one,

[Tim n = /_[[,(s2)_t'VoGxP(tm,z)dS

M_. = al,(t_,_.)- al_(t_,Z._l)

with the testing points on surface one, integration on surface two,

with the testing points on surface two, integration on surface one, and

(118)

(119)

020)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(12S)

(129)
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v ;

(13o)

(131)

(132)6,,,, _:_ ¢h . VoG2p(tm,z)dS_--]m,, 2 1(s2)

with the testing points and integration on surface two. The above integrals were approxi-

mated by a single point rectangular area at the testing point. This approximation becomes

more accurate as the number of testing points is increased. In the results presented, 150

basis functions were used, which corresponds to 66 basis functions per wavelength in the

free space region. This large number of basis functions was needed due to the much shorter

wavelength in the high permittivity water region.
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Table 1: Results of measurementsat X band for 0 = 20 °

-120

-105

-90

-75

-60

-45

-30

-15

0

15

30

•561 .530 .591 -.091

•595 .527 .591 -.060

•611 .500 .554 .003

•581 .497 .503 .072

.564 .530 .500 .094

•486 .503 .429 .131

.466 .561 .452" .123

•470 .605 .497 .081

•466 .632 .530 .038

.490 .635 .568 -.011

.497 ".595 .578 -.064

Table 2: Results of measurements at X band for 0 = 30 °

I I u I
--120 .524 .541 .584 -.103

--105 .557 .534 .578 -.065

-90 .564 .510 .557 -.040

-75 .527 .500 .493 .041

-60 .527 .530 .493 .071

-45 .446 .510 .420 .116

-30 .449 .568 .453 .111

-15 .453 .622 .514 .047
t

0 .463 .632 .544 .007

15 .486 .649 .574 -.013

30 .497 .618 .581 -.047
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9 Figure Captions

Figure 1: Geometry of a "two-layer" periodic surface

Figure 2: Comparison of EBC and MOM brightness temperatures at polar angle 20 ° versus

azimuthal angle (a) TBh (b) TB,, (c) UB (d) VB

Figure 3: Comparison of theoretical and experimental brightness temperatures at polar

angle 20 ° versus azimuthal angle (a) TBh (b) TB,, (c) UB (d) TBv

Figure 4: Comparison of theoretical and experimental brightness temperatures at polar

angle 30 ° versus azimuthal angle (a) TBh (b) TBu (c) UB (d) TBp
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